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Cell size distribution in random tessellations of space
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Random subdivisions in B-dimensional Euclidean space are commonly observed in many scientific fields,
such as metallurgy, geology, biology, and even, in the case of Rrge subjects related to information
codification. This paper presents an analytical approximation of the size probability distribution in space
subdivisions generated by random point processes, which include the well-known cases of the Poisson-Voronoi
and the Johnson-Mehl cellular structures. Based on the calculations of Gibert Math. Stat. 33, 958
(1962] and an assumption for the distribution shape, the cell size distributions are obtained in a general way
for a very wide range of random space subdivisions.
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I. INTRODUCTION D-dimensional space into convex polyhedric cells, here

Random subdivisions of space can be obtained b mancalled “crystals,” and is built using an initial distribution of
. ! SP >0 Dy oints, each one becoming a “seed” of one crystal. The face
different processes. Specifically, the space subdivisions cre-

ated during nucleation and growth processes are very imposeparatmg two neighboring - polyhedra—of dimension

tant in many scientific fields, ranging from metallur andb_l_biseCtS perpendicularly the line connecting their
) y ) ging . 9y seeds. A random point seed distribution generates the well-
biology to ecology and social sciencgg. This work ad-

dresses random tessellations formed when a certain mediuknOWn Poisson-VoronaiPV) network; in this case the whole
. . . X . NN twork is defined by a single parameter, namely, the density
is progressively occupied by growing domains appearin

randomlv in the untransformed space. The completel tranq?f seedsp. This PV tessellation has been widely studied in
y pace. pietely She literature; it is worth mentioning the works by Meijering

gogrli%ir:e%l;r?hte)eﬁf;g::ﬁiﬁﬁgIi;f‘téucgrj]rde tvr\,/gh fésﬁﬁrtr';?] and Gilbert[6]. In these works several geometrical pa-
b 9 q y g ameters of the PV tessellation were calculated using differ-

O o sy N 1chniques;among hese, he Gilbert method o compu.
Voronoi and Johnson-Mehl tessellations. However. an infi,"9 the variance of the crystal size d|str|bL!t|on is pqrthularly
nite number of different tessellations cén be obt:elined b;elevant to the preser_n WOI‘|'(. In the following, the sizeil
varying either the nucleation frequency or the growth rate stand for th'e generalizel-dimensional volu.me of a cell.
) ; : . . Concerning the shape of the crystal size PB[), an
Basing our calculations in those of previous papers, in

Sec. Il of this paper we will calculate an accurate approach tgnalytlcal resu'lt was derived only for the one-dimensional

the cell size probability density functiai?DF) of a Poisson- case[5,7], leading to

Voronoi tessellation in two- and three-dimensional spaces. f(s) = 4sp® exp(— 2p9) (1)

These results will be generalized in Sec. Ill to compute the

cell size PDF in the case of an arbitrary, time-dependentwhere s corresponds in this case to the crystal length. For

nucleation frequency, with the Johnson-Mehl tessellation behigher dimensions only an empirical crystal size distribution

ing the specific case of a constant nucleation frequency. Akas been proposed up to now; Kiaj and Weaireet al.[8]

far as we know there is no similar approach in the literaturefitted a gamma distribution to the results of a computer simu-

Finally, we will analyze the accuracy of our approach and wdated two-dimensional PV network. In this paper we will use

will discuss possible improvements. this result, assuming that the crystal size PDF in a PV net-
work is correctly described by the PDF of a gamma distri-

bution, that is,
Il. CELL SIZE PROBABILITY DISTRIBUTION IN A

POISSON-VORONOI TESSELLATION f(s) o« L exp(— vps) )

The Voronoi network or tessellation is a well-known \ynere the crystal size would represent the crystal area and
mathematical cellular structure and is widely applied inye crystal volume in the two- and three-dimensional cases,
many diverse scientific field2—4]. This network divides the ogectively. One can easily notice that this function matches

the one-dimensional size PDF of HG) if »=2. Values ofv
for higher dimensions were numerically fitted or analytically
*Electronic address: eloi.pineda@upc.es approximated8,9].
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A particularly interesting property of the gamma distribu-
tion is that the defining parametessandp can be expressed
in terms of the expected valils) and the variance vés) as
[10]

p=E(97,

_ E(9?
- var(s)

3

Hence, the results obtained by Gilb¢f] can be used to

calculate the two-dimensional and three-dimensional size
distributions. Some of these results will be recalled now to
allow further development.

Gilbert studied the relation between the crystal size PDF,
f(s), and the probability density function that a random cho-

sen point belongs to a crystal of siseHe found that this FIG. 1. Schematic drawing of the volum&Q,b) used in the
function is given by calculation of probabilityP(b).

MCEECl @ Vo eo,lb)

Z[Vé(ao - sinag) +r3(ap—sinap)], D=2,

which combines the fact that a large crystal has a proportion- -
ally large chance of containing the point, thatss&(s), and T o B 2 B _
the probability of finding such a crystal among the ensemble, 3[h0(3ro ho) +hp(3rp—hp)], D=3,

which is given byf(s). The expected sizE* (s) of this new 7)
probability distribution is then

2 where

o E(S)

E (S)_?s)' (5) a,=2(m—6,),

It follows that the knowledge oE* (s) would allow the de- h,=r,(1+ cosé,), (8)

termination of the variance vi@ and, consequently, of the
exponentr which determines the crystal size distribution.

Gilbert calculatedE* (s) by means of a probability?(b) rf) =12 +b? - 2rgb costo,
that a randomly chosen poifi and another poinP at dis-

and using the cosine theorem

tanceb are both contained in the same crystal. Such prob- 12 4 p2— 2
ability can be written as cosfp= +——2 (9)
2rpb
P(b) = pf exg - pV(Q,b)Jdm(Q), (6)  The expected value of the crystal size containing the random
chosen poinD, E* (s), can then be calculated as

wheredm(Q) is the D-volume differential around a poir@,
and thenpdm(Q) is the probability that a nucleation center is
situated at poin@. The term exp-pV(Q,b)] gives the prob-
ability that no other nucleation center is nearer to the pointsvhich is the integral over all the point® in the
O andP, V(Q,b) being the union of the two circular regions D-dimensional space weighted by its probability of belong-
determined by point©, P, and Q sketched in Fig. 1. The ing to the same crystal as poitt
integral is taken over all the poin® in the D-dimensional The previous triple integral can be evaluated numerically;
space. we used an extended midpoint algorittiiri] to an accuracy

In the specific cases of two and three dimensions the@f 107, obtainingE* (s)=1.27%™ and 1.179* for two
position of the pointQ can be determined by the polar and three dimensions, respectively. Hence, applying &)s.
coordinates (ro,60o) with respect to the pointO, and(5), it is obtained that
which implies dm(Q)=2rodrodés (D=2) and dm(Q)

* (@) = D72 [* D-1
E (S)—mfo P(b)b db (10)

=27r2 sin odrodéo (D=3); thus ro must be integrated v=3.575,D =2,
from O toe and 6y from O to . As shown in Fig. 1, the
volumeV (Q,b)=V (rg, 6p,b) can be expressed as r=5.586,D =3. (11
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calculated using the Gilbert method. This result is a useful
tool for many scientific works where the PV network is em-
ployed; however, it has not been exploited in the literature,
and costly stochastic simulations are usually performed when
dealing with such systems.

Ill. CELL SIZE PROBABILITY DISTRIBUTION IN A
TESSELLATION GENERATED BY AN ARBITRARY, TIME-

0.5 7 DEPENDENT, RANDOM NUCLEATION
The PV tessellation is equivalent to the structure gener-
ated by a random distribution of crystal seeds, all growing at
. the same rate and fixed in space without pushing apart as
% they grow into contact. Another important model of cellular
(’2‘ 0 I I structure, widely used in solid state transformatiptg], is

the one generated by crystal seeds appearing progressively as
1 3D the time elapses. Each seed is then defined by a space posi-
tion A; and a “birth” timet;, and the corresponding crystal is
then made up by all the points such that the sphere growing
at rateu from the seedA,,t;) is the first to cover them. For
the sake of simplicity, in this work we define a scaled birth
time r=ut which has length dimensions, a crystal seed being
0.5 7 then determined by thegA,7) position in a (D+1)-
dimensional space.

When the seeds nucleated at each timm®nstitute a ran-
dom point distribution, the model is completely determined
by a single functionw(7), the “nucleation” rate. This func-

0 - : | tion is the density of seeds per unit volume attempting to
0 1 2 3 4 appear in random spatial positions in the time inteival
S/E(s) +d7), the seeds actually appearing only in the regions that

are still not occupied by other crystals. In this paper we will

FIG. 2. Cell size probability density functions of PV tessella- refer to such cellular structure generating processes as “ran-
tions in two and three dimensions. Comparison between stochast@dom nucleation models.” The previously studied PV tessel-
simulations(grey bar$ and a gamma distribution with the com- lation is a particular case of a random nucleation model with
puted parameterdine). w(7)=pd(7). Also the well-known Johnson-Mel{IM) tes-

sellation is obtained fow(7) =const; it is interesting to notice

It is worth saying that in the one-dimensional system, thethat in such a case the whole network is a semi-infinite,
integral of Eq. (10) can be analytically solved giving Poisson-Voronoi-like network in a(D+1)-dimensional
E* (9=32p™! and then»=2 as expected. In the case of Space[6].
higher dimensions, the validity of the gamma distribution ~ Several paper§4,13-1§ studied the topological proper-
assumption for a PV network can be checked against conties of such cellular structures. In the caséef1 the crystal
puter simulations of such systems. Figure 2 shows the con$ize distribution can be analytically derived by different tech-
parison between the PDF of a gamma distribution, using th&iques[5,7,17. However, to our knowledge there is no the-
previous calculated variances, and the results of stochastfetical approximation of the crystal size distribution gener-
simulations. These simulations are performed in 204gted in such models fob>1. Here, we will propose an
X 2048 and 256 256x 256 grids with periodic boundary approach to calculate this probability distribution. As a start-
conditions for the two- and three-dimensional PV tessellaing point, we will split the global crystal size PDg), into
tions, respectively. In these simulations the crystal seeds functionsf,(s) defined as the size probability density func-
were randomly distributed and the seed density was chosdions of the crystals with birth time.
to ensure a number of crystals not less tha® #ach grid The space fraction occupied at a certain tix(e), can be
point was afterward assigned to the crystal growing from thecalculated by means of the so-called Avrami equation
nearest seed. The results shown correspond to the averade8—223, which can be written as
distribution obtained from 100 of such simulations in each

T D/2
case. o . X(r)=1- ex;:(— J 77-—(7'— T’)Dw(T')dT'> .
The results shown in Fig. 2 upheld the assumption of a o I'(D/2+1)
gamma distribution for the crystal size distribution in a PV 12)
tessellation, as already shown in previous pag@:8,9.
More important, the values of the variance and, conseThe second term on the right hand side of this equation is the
quently, the exponent determining this distribution can be probability that a randomly chosen point is not occupied by
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any 7 crystal at timer, the term[#°/2/T'(D/2+1)](7— )P
being the volume of ®-dimensional sphere growing from a
7 seed. The validity of this equation has been extensively
checked in the literature, and it has been obtained from
purely statistical reasoning; see, for example, R23]. Us-

ing this Avrami equation, the number of seeds per unit
volume actually nucleated can be easily calculated as

p,d7=[1-X(7)]w(7)d7, (13

which is the density of birth attempts multiplied by the re-
maining free space at time Hence, the global size PDF can
be written as

©

f p-f(s)dr

o FIG. 3. Sketch of the regions involved in the calculation

f(s) = — (14  of x,.
J p-dr - . _

0 occupied. Figure 3 shows schematically the regions involved
in such calculation. Using Eq$17) and (13), the expected

in terms of thef(s) functions. value of ar-crystal size is then easily obtained as

In our approach we will consider that the seeds are
distributed randomly inside the final space fraction occupied
only by 7 crystals; under this hypothesis, we can consider E(9) = *r (19)
that the partitioning of this space will be similar to the one Pr
obtained in a PV tessellation, where the whole space is par-
titioned between randomly distributed seeds. Therefore, eadhat is, the space fraction occupied byrystals divided by

f.(s) will be the PDF of a gamma distribution, the number of such crystals.
For the calculation of vafs) a Gilbert-like method will
f(s) o g7t exp(ls), (15) be adppted. V_Vhilg Gilbert calculated the \{ariance of the g_lo—
E.(s) bal size distribution for the JM tessellation, here we will

show that it is also possible to calculate the variance of the
7-crystal size distributions. Furthermore, here we will calcu-
late such variances not only for the JM tessellation but for
(s;my random nucleation model determined by a nucleation
rate o(7).

determined by the expected valkgs) and an exponeni,.
The validity and accuracy of this hypothesis will be dis-
cussed later in the paper by analyzing the obtained result
The f(s) functions are determined if their expected value
E.(s) and variance vafs) can be calculated, the exponent

. Following the same reasoning as in the previous section,
being the variance will be now calculated by means of the prob-
E.(9)? ability density functionf:(s) that a random chosen point be-
V= m- (16) longs to ar crystal of sizes, which is
E.(s) can be calculated in many different ways. Here we ) s
will calculate first the space fraction occupied onlybgrys- f(s)= XTE—(S)fT(S) = pAsf(9)]. (20)
tals in the final tessellation, which is T
P2 * o1 Here,x, is the probability that a random point belongs to the
Xdr= mw(T)deo Crr==dr,  (17)  space fraction occupied by crystals,s/E.(s), is the term

stating that a large crystal has a proportionally large chance

where w(7n)dr is the density of possibler seeds, 0f containing the point, anti(s) accounts for the probability
[D7”2/T'(D/2+1)]rP~1dr is theD-dimensional volume of a of finding a crystal of such a size among the ensemble of

corona of radius centered on a seed and crystals. From the previous equation one can easily obtain
r+7 7TD/2 that
C.r)=exp - ———(r+7-7)Pow(7)d7
A1) p( JO 1ﬂ(DIZJrl)( 7= 7) w(7') r) E(s
var,(s) = ——— - [E(9)] (21)
(18) pr

is the probability that a poir® in this corona has ne’ seed :
closer tharr + 7— 7/, which is the length grown by & crys- and regarding Eq16)

tal in the same time the crystal has growrr. The upper « .

i ; ; E_(s)

limit of the integral is taken because a seed nucleated at a v=—__q| (22)
time 7 >r+ 7 always finds any point of the corona already T \plEA97T?
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FIG. 4. Schematic drawing of the volunw&€Q,b, 7—7") used in
the calculation of probability (b).

As in the previous section, the calculationEJ,*I(s) will be
related to the probability?,(b) that two randomly chosen
pointsO andP separated by a distanbebelong to the same
7 crystal, which can be written as

Pf(b)=w(7)f exp{-feV(Q,b,T— )o(r)dr |dMQ),
0
(23

the integral taken over all the poing of the D-dimensional
space. The termn(7)dm(Q) is the probability of ar seed to

PHYSICAL REVIEW E 70, 066119(2004)
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FIG. 5. v, parameters of the distributions computed with the
analytical equationglines) and obtained from stochastic simula-
tions (symbolg for a Johnson-Mehl model in two and three
dimensions.

to the pointO, the D-dimensional volumé&/(Q,b,7—7") be-

ing then calculable as the union of the two circular or spheri-
cal regions with centers at poinf® and P schematically
depicted in Fig. 4. For the sake of simplicity, we will define
the distanced=7-7', which is the difference between the
radius of twoD-dimensional spheres growing fromand 7/
seeds. If two point© and P separated by a distandebe-
long to the same crystal with seed at positio®, any other

be placed at poin@, and the exponential term is the prob- 7 seed must be outside the spheres defined by the radii
ability that there is no other crystal which can occupy therg =ro+d andrp 4=rp+d, whererg andrp are the distances

points O and P before the crystal nucleated @t
In the case of two and three dimensions the p@Qintan
be determined by the polar coordinateg, 6,) with respect

from point Q to points O and P. When these two spheres
overlap, which meansg 4+rp 4> b, their union can be writ-
ten as

1 . .
—[ré,d(ao,d —Sinagg) + rlzf’,d(aP,d —-sinapy)], D=2,

V(Q,b,d) =

(24)

o
g[hé,d(:’*ro,d ~hog) +h24(3rpq=hp], D=3,

where
ayq=2(m— bxq),
hya=rxd(1+ cosb, ), (25)
and
r84=Tgq+b?—2rg4bcostpg,
r54="rpg+b?—2rp4bcosbp . (26)

If rog+rpg<<b, the two spherical regions become nonover-

lapped and theW(Q,b,d) is calculated as

D/2 5
————|TI
I'(D/2 + 1)[ o.d

The above equations allow(Q,b,d) to be expressed in
terms ofrg g, rp g, b, andd. The basic relationship provided
by the cosine theorem in EQ) is still valid for obtaining
re=rp(fo, 0o,b) and using the definitions a4, rp 4, andd
one obtains V=V(rg, 6p,b,7—7"). Given that dm(Q)
=2rodrodby (D=2) and dm(Q)=2mr2 sin fodrodby (D
=3) the integrals in Eq(23) become well defined for the
two- and three-dimensional cases.

As in the previous section, the expected vaE],és) can
be calculated by means of@-dimensional spatial integral

V(Q,b,d) = +1p 4l (27)
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FIG. 6. Cell size probability density functions of JM tessella- .
tions in two and three dimensions. Comparison between stochastl
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'

FIG. 7. Partial view of a stochastic simulation of a two-
dimensional JM tessellation. Different grey intensities correspond
to crystals with different birth times.

over all pointsP weighted by the probability (b) of be-
longing to the same crystal as poidf that is,

. D7TD/2 ® o1
E(s)= mfo P.(b)b®~*db. (28)

This multiple integral can be handled numerically for any
nucleation rate functiom(7).

The results of the integrals in Eqgl2), (17), and (28),
pintly with Eqg. (22), allow the calculation of the. exponent

simulations(grey bars and a sum of gamma distributions with the @nd then the obtainment of the distributions. Figure 5

computed parametertine).

(lines) shows thev, values versus the birth timecalculated

0.05 —

2D

x(1,)=0.8

FIG. 8. Size probability density functions of
crystals with a given birth time of a JM tessel-

lation in two dimensionstop plotg and three di-
mensions(bottom plot3. Comparison between
3D stochastic simulations with time step. (grey
lines) and the computed functions assuming a
gamma distributior(black lineg.

G
N,
< o
Q
=
< 03 4 3D

02 - x(73)=0.8

e x(1,)=0.2

T,= x(t,)=0.95
0 T m T
0 1 2 4 0 1
S/E(s)
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the crystals’ radii some fixed amouri8) each grid point is
ascribed to the crystal that reaches it first. The simulation
executes time steps successively until the whole space is
completely covered. As in the previous section, the results
presented here are the averaged results of 100 simulations,
andv, is calculated through the statistical computation of the
variance and the mean volume of the simulated crystals. It
can be noted that the agreement between these stochastic
0.5 7 simulations and the analytical computation is excellent.
Figure 6 shows the plot of the cell size PB({S) obtained
from Eqgs.(14) and(15) against the results of the stochastic
simulation of a JM tessellation. As observed in the figure, the
cell size PDF obtained from the stochastic simulations is

i 0 well reproduced by the procedure presented here; the agree-
= ! ! ! ment is excellent foD=3, while slight deviations can be
noticed in the lowest cell values f@=2. As the computa-
3D tion of the variances is analytical, the source of this discrep-
1 ancy is the assumption of a gamma probability distribution

for the -crystal size.

It is worth noticing here that the assumption made in Eq.
(15) is based on the empirical result obtained for the PV
tessellation, where the size crystal distribution was well de-
0.5 - scribed by a gamma distribution. However, there exists a
significant difference between the PV tessellation and a set of
7 crystals in an arbitrary random nucleation model. Although
the 7 seeds are randomly distributed inside the space fraction
x,d7 occupied by ther crystals, such space is not a continous
0 : : : space. Indeed, in the case of a JM tessellation there is a low

0 1 2 3 p_robal_mllty of flndlng two neighbor _crys_tals with the same

S/E(s) birth yme T Figure 7 shows.a partial view pf a _S|mulated
two-dimensional JM tessellation where the birth times of the

FIG. 9. Cell size probability density functions of tessellations Crystals are shown as different gray intensities; the clearer
obtained for a “preexisting- constant” nucleation law in two and the grain the lower its birth time. A detailed analysis of the
three dimensions. Comparison between stochastic simulatioeg tessellations obtained from stochastic simulations showed
barg and a sum of gamma distributions with the computed paramihat there is a very low probability to find a pair of neighbor
eters(line). crystals nucleated at the same simulation time step.

From this discussion it follows that it is convenient to
for a JM model[w(7)=consi to an accuracy of I§. Re-  check the accuracy of the assumption made in(E§). Fig-
garding Eq(16), these results imply that the relative disper- ure 8 compares the proposéds) functions to the size PDF
sion of thef (s) functions, va;(s)/Ef(s), increases witlr. As  obtained from simulations of two- and three-dimensional JM
already stated in previous works, the growth of an “earlier’tessellations for crystals with four different birth times
nucleated, and therefore probably large, crystal is little afnhamely, 7,=0, x(7,)=0.2, x(73)=0.8, andx(7,)=0.95. This
fected by impinging on a “later” nucleated, and thereforeallows us to analyze crystals born either at the initial on the
probably small, crystal. On the contrary, the growth of thisfinal time steps of the simulations; note that the abscissa
small crystal is considerably affected by impinging on thescale needs to be enlarged in the latter cases to show the
neighboring large one. This means the final shapes of thteatures of the curve. Again, the shape of the simulated
crystals with the lowest nucleation timeare expected to be 7-crystal size PDF is close to that of a gamma distribution,
much more homogenous than the ones with the highest although the agreement is not as good as for the PV tessel-
thus implying a lower dispersion around the expected valudations discussed in the previous section. A deep analysis of
E.(9). the simulatedf (s) shows that they have systematically a

These analytical results were compared to stochastikurtosis value lower than that of the corresponding gamma
simulations of two- and three-dimensional JM tessellationsglistribution.
and thev, values obtained are also plotted in Fig(fym- Finally, with the aim of checking further the approxima-
bolg). These stochastic simulations are performed using thtion presented in this paper, Fig. 9 shows the results obtained
same grids as for the PV tessellations shown in the previoutor a different random nucleation model. In this case the
section. In this case, the generation of the final tessellation itessellation is generated by a nucleation law givernwiy)
performed by time steps, each of them consisting of threepyd(7)+w,, that is, a certain amount of preexisting seeds
substeps(1) a new set of crystal seeds is randomly distrib-followed by a constant nucleation. The valuespgfand wg
uted with some fixed density?) a growth process increases are chosen to achieve a tessellation with exactly the same
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quantity of preexisting and posteriorly nucleated crystalsdeviations between the presented method and the stochastic

This is indeed a combination of the nucleation laws leadingsimulations are attributed to the assumption of gammatike

to the already discussed PV and JM tessellations. As oldistributions. Further development of the present work could

served in Fig. 9, the model presented in this paper is alsbe quickly performed if a more accurate distribution shape

able to accurately describe the size distribution obtained fowas proposed for the distributions. In this sense, under-

this nucleation law. standing why the PV tessellation is accurately predicted by a
gamma distribution would be of maximum interest; unfortu-

IV. CONCLUSIONS nately, this still remains an unsolved problem.

) ) Despite the small deviations already discussed, the theory
This paper presents an approach to the computation of thgeveloped in this paper allows the calculation of the cell size

cell size probability distribution in tessellations generated bysropability distribution of tessellations generated in nucle-
random nucleation processes. The approach is an extensigfion and growth systems with arbitrary, time-dependent,
of the work of Gilbert[6], and it is based on the calculation nycleation protocols. The application of this work is then
of the means and variances of theistributions(size distri- very wide, involving obvious scientific fields, such as metal-

butions of cells nucleated at a certain timewvhich made up  |yrgy, but also a wide range of sciences where nucleation and

nucleation times. A gamma probability distribution is as-
sumed for the description of the distributions and their
defining parameters are obtained through the computation of
the corresponding distribution variances. The results ob- This work was funded by CICYT, Grant No. MAT2001-
tained compare satisfactorily to stochastic simulations in th®957, and Generalitat de Catalunya, Grant No.
case of two- and three-dimensional JM tessellations. Sligh?001SGR00190.
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