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Random subdivisions in aD-dimensional Euclidean space are commonly observed in many scientific fields,
such as metallurgy, geology, biology, and even, in the case of largeD, in subjects related to information
codification. This paper presents an analytical approximation of the size probability distribution in space
subdivisions generated by random point processes, which include the well-known cases of the Poisson-Voronoi
and the Johnson-Mehl cellular structures. Based on the calculations of Gilbert[Ann. Math. Stat. 33, 958
(1962)] and an assumption for the distribution shape, the cell size distributions are obtained in a general way
for a very wide range of random space subdivisions.
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I. INTRODUCTION

Random subdivisions of space can be obtained by many
different processes. Specifically, the space subdivisions cre-
ated during nucleation and growth processes are very impor-
tant in many scientific fields, ranging from metallurgy and
biology to ecology and social sciences[1]. This work ad-
dresses random tessellations formed when a certain medium
is progressively occupied by growing domains appearing
randomly in the untransformed space. The completely trans-
formed medium becomes a cellular structure with properties
depending on the nucleation frequency and the growth rate
of the domains during the transformation. Among these kinds
of cellular structures there are the well-known Poisson-
Voronoi and Johnson-Mehl tessellations. However, an infi-
nite number of different tessellations can be obtained by
varying either the nucleation frequency or the growth rate.

Basing our calculations in those of previous papers, in
Sec. II of this paper we will calculate an accurate approach to
the cell size probability density function(PDF) of a Poisson-
Voronoi tessellation in two- and three-dimensional spaces.
These results will be generalized in Sec. III to compute the
cell size PDF in the case of an arbitrary, time-dependent,
nucleation frequency, with the Johnson-Mehl tessellation be-
ing the specific case of a constant nucleation frequency. As
far as we know there is no similar approach in the literature.
Finally, we will analyze the accuracy of our approach and we
will discuss possible improvements.

II. CELL SIZE PROBABILITY DISTRIBUTION IN A
POISSON-VORONOI TESSELLATION

The Voronoi network or tessellation is a well-known
mathematical cellular structure and is widely applied in
many diverse scientific fields[2–4]. This network divides the

D-dimensional space into convex polyhedric cells, here
called “crystals,” and is built using an initial distribution of
points, each one becoming a “seed” of one crystal. The face
separating two neighboring polyhedra—of dimension
D−1—bisects perpendicularly the line connecting their
seeds. A random point seed distribution generates the well-
known Poisson-Voronoi(PV) network; in this case the whole
network is defined by a single parameter, namely, the density
of seedsr. This PV tessellation has been widely studied in
the literature; it is worth mentioning the works by Meijering
[5] and Gilbert[6]. In these works several geometrical pa-
rameters of the PV tessellation were calculated using differ-
ent techniques; among these, the Gilbert method for comput-
ing the variance of the crystal size distribution is particularly
relevant to the present work. In the following, the sizes will
stand for the generalizedD-dimensional volume of a cell.

Concerning the shape of the crystal size PDF,fssd, an
analytical result was derived only for the one-dimensional
case[5,7], leading to

fssd = 4sr2 exps− 2rsd s1d

wheres corresponds in this case to the crystal length. For
higher dimensions only an empirical crystal size distribution
has been proposed up to now; Kiang[2] and Weaireet al. [8]
fitted a gamma distribution to the results of a computer simu-
lated two-dimensional PV network. In this paper we will use
this result, assuming that the crystal size PDF in a PV net-
work is correctly described by the PDF of a gamma distri-
bution, that is,

fssd ~ sn−1 exps− nrsd s2d

where the crystal sizes would represent the crystal area and
the crystal volume in the two- and three-dimensional cases,
respectively. One can easily notice that this function matches
the one-dimensional size PDF of Eq.(1) if n=2. Values ofn
for higher dimensions were numerically fitted or analytically
approximated[8,9].*Electronic address: eloi.pineda@upc.es
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A particularly interesting property of the gamma distribu-
tion is that the defining parametersn andr can be expressed
in terms of the expected valueEssd and the variance varssd as
[10]

r = Essd−1,

n =
Essd2

varssd
. s3d

Hence, the results obtained by Gilbert[6] can be used to
calculate the two-dimensional and three-dimensional size
distributions. Some of these results will be recalled now to
allow further development.

Gilbert studied the relation between the crystal size PDF,
fssd, and the probability density function that a random cho-
sen point belongs to a crystal of sizes. He found that this
function is given by

f * ssd =
s

Essd
fssd, s4d

which combines the fact that a large crystal has a proportion-
ally large chance of containing the point, that is,s/Essd, and
the probability of finding such a crystal among the ensemble,
which is given byfssd. The expected sizeE* ssd of this new
probability distribution is then

E* ssd =
Ess2d
Essd

. s5d

It follows that the knowledge ofE* ssd would allow the de-
termination of the variance varssd and, consequently, of the
exponentn which determines the crystal size distribution.

Gilbert calculatedE* ssd by means of a probabilityPsbd
that a randomly chosen pointO and another pointP at dis-
tanceb are both contained in the same crystal. Such prob-
ability can be written as

Psbd = rE expf− rVsQ,bdgdmsQd, s6d

wheredmsQd is theD-volume differential around a pointQ,
and thenrdmsQd is the probability that a nucleation center is
situated at pointQ. The term expf−rVsQ,bdg gives the prob-
ability that no other nucleation center is nearer to the points
O andP, VsQ,bd being the union of the two circular regions
determined by pointsO, P, and Q sketched in Fig. 1. The
integral is taken over all the pointsQ in the D-dimensional
space.

In the specific cases of two and three dimensions the
position of the pointQ can be determined by the polar
coordinates srO,uOd with respect to the point O,
which implies dmsQd=2rOdrOduO sD=2d and dm sQd
=2prO

2 sinuOdrOduO sD=3d; thus rO must be integrated
from 0 to ` and uO from 0 to p. As shown in Fig. 1, the
volumeV sQ,bd=V srO,uO,bd can be expressed as

VsrO,uO,bd

=5
1

2
frO

2 saO − sinaOd + rP
2saP − sinaPdg, D = 2,

p

3
fhO

2 s3rO − hOd + hP
2s3rP − hPdg, D = 3, 6

s7d

where

ax = 2sp − uxd,

hx = rxs1 + cosuxd, s8d

and using the cosine theorem

rp
2 = rO

2 + b2 − 2rOb cosuO,

cosuP =
rP

2 + b2 − rO
2

2rPb
. s9d

The expected value of the crystal size containing the random
chosen pointO, E* ssd, can then be calculated as

E* ssd =
DpD/2

GsD/2 + 1dE0

`

PsbdbD−1db s10d

which is the integral over all the pointsP in the
D-dimensional space weighted by its probability of belong-
ing to the same crystal as pointO.

The previous triple integral can be evaluated numerically;
we used an extended midpoint algorithm[11] to an accuracy
of 10−4, obtaining E* ssd=1.279r−1 and 1.179r−1 for two
and three dimensions, respectively. Hence, applying Eqs.(3)
and (5), it is obtained that

n = 3.575,D = 2,

n = 5.586,D = 3. s11d

FIG. 1. Schematic drawing of the volumeVsQ,bd used in the
calculation of probabilityPsbd.
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It is worth saying that in the one-dimensional system, the
integral of Eq. (10) can be analytically solved giving
E* ssd= 3

2r−1 and thenn=2 as expected. In the case of
higher dimensions, the validity of the gamma distribution
assumption for a PV network can be checked against com-
puter simulations of such systems. Figure 2 shows the com-
parison between the PDF of a gamma distribution, using the
previous calculated variances, and the results of stochastic
simulations. These simulations are performed in 2048
32048 and 25632563256 grids with periodic boundary
conditions for the two- and three-dimensional PV tessella-
tions, respectively. In these simulations the crystal seeds
were randomly distributed and the seed density was chosen
to ensure a number of crystals not less than 102; each grid
point was afterward assigned to the crystal growing from the
nearest seed. The results shown correspond to the average
distribution obtained from 100 of such simulations in each
case.

The results shown in Fig. 2 upheld the assumption of a
gamma distribution for the crystal size distribution in a PV
tessellation, as already shown in previous papers[2,8,9].
More important, the values of the variance and, conse-
quently, the exponentn determining this distribution can be

calculated using the Gilbert method. This result is a useful
tool for many scientific works where the PV network is em-
ployed; however, it has not been exploited in the literature,
and costly stochastic simulations are usually performed when
dealing with such systems.

III. CELL SIZE PROBABILITY DISTRIBUTION IN A
TESSELLATION GENERATED BY AN ARBITRARY, TIME-

DEPENDENT, RANDOM NUCLEATION

The PV tessellation is equivalent to the structure gener-
ated by a random distribution of crystal seeds, all growing at
the same rateu and fixed in space without pushing apart as
they grow into contact. Another important model of cellular
structure, widely used in solid state transformations[12], is
the one generated by crystal seeds appearing progressively as
the time elapses. Each seed is then defined by a space posi-
tion Ai and a “birth” timeti, and the corresponding crystal is
then made up by all the points such that the sphere growing
at rateu from the seedsAi ,tid is the first to cover them. For
the sake of simplicity, in this work we define a scaled birth
time t=ut which has length dimensions, a crystal seed being
then determined by thesAi ,tid position in a sD+1d-
dimensional space.

When the seeds nucleated at each timet constitute a ran-
dom point distribution, the model is completely determined
by a single functionvstd, the “nucleation” rate. This func-
tion is the density of seeds per unit volume attempting to
appear in random spatial positions in the time intervalst ,t
+dtd, the seeds actually appearing only in the regions that
are still not occupied by other crystals. In this paper we will
refer to such cellular structure generating processes as “ran-
dom nucleation models.” The previously studied PV tessel-
lation is a particular case of a random nucleation model with
vstd=rdstd. Also the well-known Johnson-Mehl(JM) tes-
sellation is obtained forvstd=const; it is interesting to notice
that in such a case the whole network is a semi-infinite,
Poisson-Voronoi-like network in asD+1d-dimensional
space[6].

Several papers[4,13–16] studied the topological proper-
ties of such cellular structures. In the case ofD=1 the crystal
size distribution can be analytically derived by different tech-
niques[5,7,17]. However, to our knowledge there is no the-
oretical approximation of the crystal size distribution gener-
ated in such models forD.1. Here, we will propose an
approach to calculate this probability distribution. As a start-
ing point, we will split the global crystal size PDF,fssd, into
t functionsftssd defined as the size probability density func-
tions of the crystals with birth timet.

The space fraction occupied at a certain time,xstd, can be
calculated by means of the so-called Avrami equation
[18–22], which can be written as

xstd = 1 − expS−E
0

t pD/2

GsD/2 + 1d
st − t8dDvst8ddt8D .

s12d

The second term on the right hand side of this equation is the
probability that a randomly chosen point is not occupied by

FIG. 2. Cell size probability density functions of PV tessella-
tions in two and three dimensions. Comparison between stochastic
simulations(grey bars) and a gamma distribution with the com-
puted parameters(line).
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any t8 crystal at timet, the termfpD/2/GsD /2+1dgst−t8dD

being the volume of aD-dimensional sphere growing from a
t8 seed. The validity of this equation has been extensively
checked in the literature, and it has been obtained from
purely statistical reasoning; see, for example, Ref.[23]. Us-
ing this Avrami equation, the number oft seeds per unit
volume actually nucleated can be easily calculated as

rtdt = f1 − xstdgvstddt, s13d

which is the density of birth attempts multiplied by the re-
maining free space at timet. Hence, the global size PDF can
be written as

fssd =

E
0

`

rtftssddt

E
0

`

rtdt

s14d

in terms of theftssd functions.
In our approach we will consider that thet seeds are

distributed randomly inside the final space fraction occupied
only by t crystals; under this hypothesis, we can consider
that the partitioning of this space will be similar to the one
obtained in a PV tessellation, where the whole space is par-
titioned between randomly distributed seeds. Therefore, each
ftssd will be the PDF of a gamma distribution,

ftssd ~ snt−1 expS− nts

Etssd
D , s15d

determined by the expected valueEtssd and an exponentnt.
The validity and accuracy of this hypothesis will be dis-
cussed later in the paper by analyzing the obtained results.
The ftssd functions are determined if their expected value
Etssd and variance vartssd can be calculated, the exponentnt

being

nt =
Etssd2

vartssd
. s16d

Etssd can be calculated in many different ways. Here we
will calculate first the space fraction occupied only byt crys-
tals in the final tessellation, which is

xtdt =
DpD/2

GsD/2 + 1d
vstddtE

0

`

CtsrdrD−1dr, s17d

where vstddt is the density of possiblet seeds,
fDpD/2/GsD /2+1dgrD−1dr is theD-dimensional volume of a
corona of radiusr centered on at seed and

Ctsrd = expS−E
0

r+t pD/2

GsD/2 + 1d
sr + t − t8dDvst8ddt8D

s18d

is the probability that a pointP in this corona has not8 seed
closer thanr +t−t8, which is the length grown by at8 crys-
tal in the same time thet crystal has grownr. The upper
limit of the integral is taken because a seed nucleated at a
time t8. r +t always finds any point of the corona already

occupied. Figure 3 shows schematically the regions involved
in such calculation. Using Eqs.(17) and (13), the expected
value of at-crystal size is then easily obtained as

Etssd =
xt

rt

, s19d

that is, the space fraction occupied byt crystals divided by
the number of such crystals.

For the calculation of vartssd a Gilbert-like method will
be adopted. While Gilbert calculated the variance of the glo-
bal size distribution for the JM tessellation, here we will
show that it is also possible to calculate the variance of the
t-crystal size distributions. Furthermore, here we will calcu-
late such variances not only for the JM tessellation but for
any random nucleation model determined by a nucleation
ratevstd.

Following the same reasoning as in the previous section,
the variance will be now calculated by means of the prob-
ability density functionft

*ssd that a random chosen point be-
longs to at crystal of sizes, which is

ft
*ssd = xt

s

Etssd
ftssd = rtfsftssdg. s20d

Here,xt is the probability that a random point belongs to the
space fraction occupied byt crystals,s/Etssd, is the term
stating that a large crystal has a proportionally large chance
of containing the point, andftssd accounts for the probability
of finding a crystal of such a size among the ensemble oft
crystals. From the previous equation one can easily obtain
that

vartssd =
Et

*ssd
rt

− fEtssdg2 s21d

and regarding Eq.(16)

nt = S Et
*ssd

rtfEtssdg2 − 1D−1

. s22d

FIG. 3. Sketch of the regions involved in the calculation
of xt.
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As in the previous section, the calculation ofEt
*ssd will be

related to the probabilityPtsbd that two randomly chosen
pointsO andP separated by a distanceb belong to the same
t crystal, which can be written as

Ptsbd = vstd E expF−E
0

`

VsQ,b,t − t8dvst8ddt8GdmsQd,

s23d

the integral taken over all the pointsQ of theD-dimensional
space. The termvstddmsQd is the probability of at seed to
be placed at pointQ, and the exponential term is the prob-
ability that there is no other crystal which can occupy the
pointsO andP before the crystal nucleated atQ.

In the case of two and three dimensions the pointQ can
be determined by the polar coordinatessrO,uOd with respect

to the pointO, theD-dimensional volumeVsQ,b,t−t8d be-
ing then calculable as the union of the two circular or spheri-
cal regions with centers at pointsO and P schematically
depicted in Fig. 4. For the sake of simplicity, we will define
the distanced=t−t8, which is the difference between the
radius of twoD-dimensional spheres growing fromt andt8
seeds. If two pointsO and P separated by a distanceb be-
long to the samet crystal with seed at positionQ, any other
t8 seed must be outside the spheres defined by the radii
rO,d=rO+d andrP,d=rP+d, whererO andrP are the distances
from point Q to points O and P. When these two spheres
overlap, which meansrO,d+rP,d.b, their union can be writ-
ten as

VsQ,b,dd =5
1

2
frO,d

2 saO,d − sinaO,dd + rP,d
2 saP,d − sinaP,ddg, D = 2,

p

3
fhO,d

2 s3rO,d − hO,dd + hP,d
2 s3rP,d − hP,ddg, D = 3, 6 s24d

where

ax,d = 2sp − ux,dd,

hx,d = rx,ds1 + cosux,dd, s25d

and

rP,d
2 = rO,d

2 + b2 − 2rO,db cosuO,d,

rO,d
2 = rP,d

2 + b2 − 2rP,db cosuP,d. s26d

If rO,d+rP,d,b, the two spherical regions become nonover-
lapped and thenVsQ,b,dd is calculated as

VsQ,b,dd =
pD/2

GsD/2 + 1d
frO,d

D + rP,d
D g. s27d

The above equations allowVsQ,b,dd to be expressed in
terms ofrO,d, rP,d, b, andd. The basic relationship provided
by the cosine theorem in Eq.(9) is still valid for obtaining
rP=rPsrO,uO,bd and using the definitions ofrO,d, rP,d, andd
one obtains V=VsrO,uO,b,t−t8d. Given that dmsQd
=2rOdrOduO sD=2d and dmsQd=2prO

2 sinuOdrOduO sD
=3d the integrals in Eq.(23) become well defined for the
two- and three-dimensional cases.

As in the previous section, the expected valueEt
*ssd can

be calculated by means of aD-dimensional spatial integral

FIG. 4. Schematic drawing of the volumeVsQ,b,t−t8d used in
the calculation of probabilityPtsbd. FIG. 5. vt parameters of thet distributions computed with the

analytical equations(lines) and obtained from stochastic simula-
tions (symbols) for a Johnson-Mehl model in two and three
dimensions.
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over all pointsP weighted by the probabilityPtsbd of be-
longing to the same crystal as pointO, that is,

Et
*ssd =

DpD/2

GsD/2 + 1dE0

`

PtsbdbD−1db. s28d

This multiple integral can be handled numerically for any
nucleation rate functionvstd.

The results of the integrals in Eqs.(12), (17), and (28),
jointly with Eq. (22), allow the calculation of thent exponent
and then the obtainment of thet distributions. Figure 5
(lines) shows thent values versus the birth timet calculated

FIG. 6. Cell size probability density functions of JM tessella-
tions in two and three dimensions. Comparison between stochastic
simulations(grey bars) and a sum of gamma distributions with the
computed parameters(line).

FIG. 7. Partial view of a stochastic simulation of a two-
dimensional JM tessellation. Different grey intensities correspond
to crystals with different birth times.

FIG. 8. Size probability density functions of
crystals with a given birth timet of a JM tessel-
lation in two dimensions(top plots) and three di-
mensions(bottom plots). Comparison between
stochastic simulations with time stepDt (grey
lines) and the computed functions assuming a
gamma distribution(black lines).
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for a JM modelfvstd=constg to an accuracy of 10−3. Re-
garding Eq.(16), these results imply that the relative disper-
sion of theftssd functions, vartssd /Et

2ssd, increases witht. As
already stated in previous works, the growth of an “earlier”
nucleated, and therefore probably large, crystal is little af-
fected by impinging on a “later” nucleated, and therefore
probably small, crystal. On the contrary, the growth of this
small crystal is considerably affected by impinging on the
neighboring large one. This means the final shapes of the
crystals with the lowest nucleation timet are expected to be
much more homogenous than the ones with the highestt,
thus implying a lower dispersion around the expected value
Etssd.

These analytical results were compared to stochastic
simulations of two- and three-dimensional JM tessellations,
and thent values obtained are also plotted in Fig. 5(sym-
bols). These stochastic simulations are performed using the
same grids as for the PV tessellations shown in the previous
section. In this case, the generation of the final tessellation is
performed by time steps, each of them consisting of three
substeps:(1) a new set of crystal seeds is randomly distrib-
uted with some fixed density;(2) a growth process increases

the crystals’ radii some fixed amount;(3) each grid point is
ascribed to the crystal that reaches it first. The simulation
executes time steps successively until the whole space is
completely covered. As in the previous section, the results
presented here are the averaged results of 100 simulations,
andnt is calculated through the statistical computation of the
variance and the mean volume of the simulated crystals. It
can be noted that the agreement between these stochastic
simulations and the analytical computation is excellent.

Figure 6 shows the plot of the cell size PDFfssd obtained
from Eqs.(14) and (15) against the results of the stochastic
simulation of a JM tessellation. As observed in the figure, the
cell size PDF obtained from the stochastic simulations is
well reproduced by the procedure presented here; the agree-
ment is excellent forD=3, while slight deviations can be
noticed in the lowest cell values forD=2. As the computa-
tion of the variances is analytical, the source of this discrep-
ancy is the assumption of a gamma probability distribution
for the t-crystal size.

It is worth noticing here that the assumption made in Eq.
(15) is based on the empirical result obtained for the PV
tessellation, where the size crystal distribution was well de-
scribed by a gamma distribution. However, there exists a
significant difference between the PV tessellation and a set of
t crystals in an arbitrary random nucleation model. Although
thet seeds are randomly distributed inside the space fraction
xtdt occupied by thet crystals, such space is not a continous
space. Indeed, in the case of a JM tessellation there is a low
probability of finding two neighbor crystals with the same
birth time t. Figure 7 shows a partial view of a simulated
two-dimensional JM tessellation where the birth times of the
crystals are shown as different gray intensities; the clearer
the grain the lower its birth time. A detailed analysis of the
tessellations obtained from stochastic simulations showed
that there is a very low probability to find a pair of neighbor
crystals nucleated at the same simulation time step.

From this discussion it follows that it is convenient to
check the accuracy of the assumption made in Eq.(15). Fig-
ure 8 compares the proposedftssd functions to the size PDF
obtained from simulations of two- and three-dimensional JM
tessellations for crystals with four different birth timest,
namely,t1=0, xst2d=0.2, xst3d=0.8, andxst4d=0.95. This
allows us to analyze crystals born either at the initial on the
final time steps of the simulations; note that the abscissa
scale needs to be enlarged in the latter cases to show the
features of the curve. Again, the shape of the simulated
t-crystal size PDF is close to that of a gamma distribution,
although the agreement is not as good as for the PV tessel-
lations discussed in the previous section. A deep analysis of
the simulatedftssd shows that they have systematically a
kurtosis value lower than that of the corresponding gamma
distribution.

Finally, with the aim of checking further the approxima-
tion presented in this paper, Fig. 9 shows the results obtained
for a different random nucleation model. In this case the
tessellation is generated by a nucleation law given byvstd
=r0dstd+v0, that is, a certain amount of preexisting seeds
followed by a constant nucleation. The values ofr0 andv0
are chosen to achieve a tessellation with exactly the same

FIG. 9. Cell size probability density functions of tessellations
obtained for a “preexisting1 constant” nucleation law in two and
three dimensions. Comparison between stochastic simulations(grey
bars) and a sum of gamma distributions with the computed param-
eters(line).
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quantity of preexisting and posteriorly nucleated crystals.
This is indeed a combination of the nucleation laws leading
to the already discussed PV and JM tessellations. As ob-
served in Fig. 9, the model presented in this paper is also
able to accurately describe the size distribution obtained for
this nucleation law.

IV. CONCLUSIONS

This paper presents an approach to the computation of the
cell size probability distribution in tessellations generated by
random nucleation processes. The approach is an extension
of the work of Gilbert[6], and it is based on the calculation
of the means and variances of thet distributions(size distri-
butions of cells nucleated at a certain timet) which made up
the whole size distribution when integrated over all the
nucleation times. A gamma probability distribution is as-
sumed for the description of thet distributions and their
defining parameters are obtained through the computation of
the corresponding distribution variances. The results ob-
tained compare satisfactorily to stochastic simulations in the
case of two- and three-dimensional JM tessellations. Slight

deviations between the presented method and the stochastic
simulations are attributed to the assumption of gammaliket
distributions. Further development of the present work could
be quickly performed if a more accurate distribution shape
was proposed for thet distributions. In this sense, under-
standing why the PV tessellation is accurately predicted by a
gamma distribution would be of maximum interest; unfortu-
nately, this still remains an unsolved problem.

Despite the small deviations already discussed, the theory
developed in this paper allows the calculation of the cell size
probability distribution of tessellations generated in nucle-
ation and growth systems with arbitrary, time-dependent,
nucleation protocols. The application of this work is then
very wide, involving obvious scientific fields, such as metal-
lurgy, but also a wide range of sciences where nucleation and
growth processes are commonly observed.
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